Skip to main content

Comprehensive Comparison of Kafka, RabbitMQ, and Redis Queue

When building distributed systems, choosing the right message broker or streaming platform is crucial for your application's performance, scalability, and reliability. Kafka, RabbitMQ, and Redis Queue (using Redis Streams or Lists) are three popular choices, each with distinct characteristics and use cases. This comprehensive guide will help you understand their differences and choose the right tool for your needs.

What is Message Queuing?

Before diving into the comparison, let's understand what message queuing is and why it's important.

Message queuing is a form of asynchronous service-to-service communication used in microservices and distributed systems. Messages are stored in a queue until they are processed and deleted. Each message is processed only once by a single consumer.

Key Benefits

  • Decoupling: Producers and consumers don't need to know about each other
  • Scalability: Easy to add more producers or consumers
  • Reliability: Messages are persisted and won't be lost
  • Asynchronous Processing: Non-blocking operations improve responsiveness
  • Load Leveling: Smooth out traffic spikes

Overview of Each Technology

Apache Kafka

Apache Kafka is a distributed streaming platform designed for high-throughput, fault-tolerant, real-time data streaming. Originally developed by LinkedIn and now an Apache project.

Core Characteristics:

  • Distributed commit log
  • High throughput (millions of messages per second)
  • Built for stream processing
  • Persistent storage (configurable retention)
  • Horizontal scalability

RabbitMQ

RabbitMQ is a traditional message broker that implements the Advanced Message Queuing Protocol (AMQP). It's known for its flexibility and ease of use.

Core Characteristics:

  • Message broker with multiple protocols support
  • Sophisticated routing capabilities
  • Lower throughput compared to Kafka
  • Designed for reliable message delivery
  • Flexible exchange types

Redis Queue

Redis can be used as a lightweight message broker using either Redis Lists (simple queue) or Redis Streams (more advanced, similar to Kafka).

Core Characteristics:

  • In-memory data store (very fast)
  • Simple to set up and use
  • Limited persistence guarantees
  • Good for lightweight messaging
  • Multiple data structures for different patterns

Detailed Comparison

1. Architecture

Kafka Architecture

┌─────────────────────────────────────────────┐
│ Producers │
└──────────────┬──────────────────────────────┘


┌─────────────────────────────────────────────┐
│ Kafka Cluster │
│ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
│ │ Broker1 │ │ Broker2 │ │ Broker3 │ │
│ │ Topic │ │ Topic │ │ Topic │ │
│ │Partition│ │Partition│ │Partition│ │
│ └─────────┘ └─────────┘ └─────────┘ │
└──────────────┬──────────────────────────────┘


┌─────────────────────────────────────────────┐
│ Consumer Groups │
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ │
│ │Consumer1 │ │Consumer2 │ │Consumer3 │ │
│ └──────────┘ └──────────┘ └──────────┘ │
└─────────────────────────────────────────────┘

Kafka uses a pull-based model where consumers pull messages from brokers. Messages are organized into topics and partitions, enabling parallel processing.

# Kafka Producer Example
from kafka import KafkaProducer
import json

producer = KafkaProducer(
bootstrap_servers=['localhost:9092'],
value_serializer=lambda v: json.dumps(v).encode('utf-8')
)

# Send message to a topic
producer.send('user-events', {
'user_id': 123,
'action': 'login',
'timestamp': '2025-11-01T10:00:00Z'
})

producer.flush()
producer.close()
# Kafka Consumer Example
from kafka import KafkaConsumer
import json

consumer = KafkaConsumer(
'user-events',
bootstrap_servers=['localhost:9092'],
group_id='analytics-group',
value_deserializer=lambda m: json.loads(m.decode('utf-8')),
auto_offset_reset='earliest' # Start from beginning if no offset
)

for message in consumer:
print(f"Received: {message.value}")
# Process message
# Kafka automatically commits offset

RabbitMQ Architecture

┌─────────────────────────────────────────────┐
│ Producers │
└──────────────┬──────────────────────────────┘


┌─────────────────────────────────────────────┐
│ RabbitMQ Broker │
│ ┌──────────────────────────────────────┐ │
│ │ Exchange │ │
│ │ (Direct/Topic/Fanout/Headers) │ │
│ └──────┬───────────────────────────────┘ │
│ │ │
│ ┌──────▼──────┐ ┌──────────┐ │
│ │ Queue1 │ │ Queue2 │ │
│ └──────┬──────┘ └─────┬────┘ │
└─────────┼───────────────┼──────────────────┘
│ │
▼ ▼
┌──────────────┐ ┌──────────────┐
│ Consumer1 │ │ Consumer2 │
└──────────────┘ └──────────────┘

RabbitMQ uses a push-based model where the broker pushes messages to consumers. It features sophisticated routing via exchanges.

# RabbitMQ Producer Example
import pika
import json

connection = pika.BlockingConnection(
pika.ConnectionParameters('localhost')
)
channel = connection.channel()

# Declare a queue
channel.queue_declare(queue='task_queue', durable=True)

message = {
'task_id': 456,
'type': 'process_image',
'url': 'https://example.com/image.jpg'
}

channel.basic_publish(
exchange='',
routing_key='task_queue',
body=json.dumps(message),
properties=pika.BasicProperties(
delivery_mode=2, # Make message persistent
)
)

print(f"Sent: {message}")
connection.close()
# RabbitMQ Consumer Example
import pika
import json
import time

def callback(ch, method, properties, body):
message = json.loads(body)
print(f"Processing: {message}")

# Simulate work
time.sleep(2)

# Acknowledge message
ch.basic_ack(delivery_tag=method.delivery_tag)
print("Done")

connection = pika.BlockingConnection(
pika.ConnectionParameters('localhost')
)
channel = connection.channel()

channel.queue_declare(queue='task_queue', durable=True)

# Fair dispatch - don't give more than one message to a worker at a time
channel.basic_qos(prefetch_count=1)

channel.basic_consume(
queue='task_queue',
on_message_callback=callback
)

print('Waiting for messages...')
channel.start_consuming()

Redis Queue Architecture

┌─────────────────────────────────────────────┐
│ Producers │
└──────────────┬──────────────────────────────┘


┌─────────────────────────────────────────────┐
│ Redis Server │
│ ┌──────────────────────────────────────┐ │
│ │ Stream/List (In-Memory) │ │
│ │ ┌────┐ ┌────┐ ┌────┐ ┌────┐ │ │
│ │ │Msg1│ │Msg2│ │Msg3│ │Msg4│ │ │
│ │ └────┘ └────┘ └────┘ └────┘ │ │
│ └──────────────────────────────────────┘ │
└──────────────┬──────────────────────────────┘


┌─────────────────────────────────────────────┐
│ Consumers │
└─────────────────────────────────────────────┘

Redis offers multiple approaches for queuing: simple Lists (LPUSH/RPOP) or more advanced Streams (similar to Kafka).

# Redis Queue with Lists - Simple Example
import redis
import json

r = redis.Redis(host='localhost', port=6379, decode_responses=True)

# Producer
task = {
'job_id': 789,
'type': 'send_email',
'recipient': 'user@example.com'
}

r.lpush('task_queue', json.dumps(task))
print(f"Queued: {task}")

# Consumer (blocking pop)
while True:
# BRPOP blocks until a message is available
_, message = r.brpop('task_queue')
task = json.loads(message)
print(f"Processing: {task}")
# Process task
# Redis Streams - Advanced Example (similar to Kafka)
import redis
import time

r = redis.Redis(host='localhost', port=6379, decode_responses=True)

# Producer
stream_name = 'user-events'
r.xadd(stream_name, {
'user_id': '123',
'action': 'purchase',
'amount': '99.99'
})

# Consumer Group (similar to Kafka consumer groups)
group_name = 'analytics-group'
consumer_name = 'consumer-1'

# Create consumer group
try:
r.xgroup_create(stream_name, group_name, id='0', mkstream=True)
except redis.exceptions.ResponseError:
pass # Group already exists

# Consume messages
while True:
messages = r.xreadgroup(
group_name,
consumer_name,
{stream_name: '>'},
count=10,
block=1000 # Block for 1 second
)

for stream, message_list in messages:
for message_id, data in message_list:
print(f"Processing: {data}")
# Process message

# Acknowledge message
r.xack(stream_name, group_name, message_id)

2. Message Delivery Semantics

FeatureKafkaRabbitMQRedis
At-most-once✅ Yes✅ Yes✅ Yes
At-least-once✅ Yes (default)✅ Yes (default)✅ Yes (with Streams)
Exactly-once✅ Yes (with transactions)⚠️ Complex❌ No
Message OrderPer partitionPer queuePer stream/list

3. Performance Characteristics

Throughput Comparison

# Benchmark comparison (approximate values)
throughput = {
'Kafka': {
'messages_per_second': 1000000, # Millions
'latency_ms': 10,
'batch_size': 'Large batches (thousands)'
},
'RabbitMQ': {
'messages_per_second': 50000, # Tens of thousands
'latency_ms': 1,
'batch_size': 'Small batches (hundreds)'
},
'Redis': {
'messages_per_second': 100000, # Hundreds of thousands
'latency_ms': 0.5,
'batch_size': 'Variable'
}
}

Key Performance Insights:

  1. Kafka: Highest throughput, optimized for batch processing
  2. RabbitMQ: Lower throughput but lower latency for individual messages
  3. Redis: Very low latency due to in-memory operations, but limited by memory

4. Persistence and Durability

Kafka

  • Persistence: All messages written to disk
  • Retention: Configurable (time or size-based)
  • Replication: Multiple replicas across brokers
  • Durability: Very high - messages survive broker crashes
# Kafka producer with durability settings
producer = KafkaProducer(
bootstrap_servers=['localhost:9092'],
acks='all', # Wait for all replicas to acknowledge
retries=3,
max_in_flight_requests_per_connection=1 # Ensure ordering
)

RabbitMQ

  • Persistence: Optional (durable queues and persistent messages)
  • Retention: Until consumed and acknowledged
  • Replication: Mirrored queues (classic) or Quorum queues
  • Durability: High with proper configuration
# RabbitMQ with persistence
channel.queue_declare(queue='important_queue', durable=True)
channel.basic_publish(
exchange='',
routing_key='important_queue',
body=message,
properties=pika.BasicProperties(
delivery_mode=2 # Persistent message
)
)

Redis

  • Persistence: Optional (RDB snapshots or AOF)
  • Retention: Until processed (Lists) or time-based (Streams)
  • Replication: Master-slave replication
  • Durability: Lower - primarily in-memory

5. Scalability Patterns

Kafka Scalability

# Kafka scales by adding partitions and consumer instances
# Each partition can be consumed by only one consumer in a group

# Producer sends to different partitions
from kafka import KafkaProducer
from kafka.partitioner import RoundRobinPartitioner

producer = KafkaProducer(
bootstrap_servers=['localhost:9092'],
partitioner=RoundRobinPartitioner()
)

# Distribute across 10 partitions
for i in range(100):
producer.send('orders', key=str(i).encode(), value=f'Order {i}'.encode())

RabbitMQ Scalability

# RabbitMQ scales by adding more queues and consumers
# Multiple consumers can consume from the same queue (round-robin)

# Setup multiple workers
def start_worker(worker_id):
connection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))
channel = connection.channel()

def callback(ch, method, properties, body):
print(f"Worker {worker_id} processing: {body}")
time.sleep(1)
ch.basic_ack(delivery_tag=method.delivery_tag)

channel.basic_consume(queue='task_queue', on_message_callback=callback)
channel.start_consuming()

# Start multiple workers
import threading
for i in range(5):
threading.Thread(target=start_worker, args=(i,)).start()

Redis Scalability

# Redis Streams with consumer groups
import redis

r = redis.Redis()

# Multiple consumers in the same group
def consume_messages(consumer_name):
while True:
messages = r.xreadgroup(
'processing-group',
consumer_name,
{'orders': '>'},
count=10,
block=1000
)

for stream, msg_list in messages:
for msg_id, data in msg_list:
print(f"{consumer_name} processing: {data}")
r.xack(stream, 'processing-group', msg_id)

# Start multiple consumers
import threading
for i in range(3):
threading.Thread(target=consume_messages, args=(f'consumer-{i}',)).start()

6. Message Routing Capabilities

Kafka: Topic-Based Routing

# Kafka uses topics for routing
# Simple pub-sub model with consumer groups

producer.send('user.signup', {'user_id': 123})
producer.send('user.login', {'user_id': 123})
producer.send('order.created', {'order_id': 456})

# Different consumer groups can process same messages
# - Email service subscribes to user.signup
# - Analytics service subscribes to all user.* topics
# - Order processor subscribes to order.* topics

RabbitMQ: Exchange-Based Routing

RabbitMQ offers the most sophisticated routing capabilities:

import pika

connection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))
channel = connection.channel()

# 1. Direct Exchange - Exact routing key match
channel.exchange_declare(exchange='direct_logs', exchange_type='direct')
channel.basic_publish(
exchange='direct_logs',
routing_key='error',
body='An error occurred'
)

# 2. Topic Exchange - Pattern matching
channel.exchange_declare(exchange='topic_logs', exchange_type='topic')
channel.basic_publish(
exchange='topic_logs',
routing_key='user.signup.email',
body='New user signup'
)

# Queue bindings with patterns
channel.queue_bind(
exchange='topic_logs',
queue='email_queue',
routing_key='*.*.email' # Match all email-related messages
)

# 3. Fanout Exchange - Broadcast to all
channel.exchange_declare(exchange='notifications', exchange_type='fanout')
channel.basic_publish(
exchange='notifications',
routing_key='', # Ignored in fanout
body='System maintenance at 2 AM'
)

# 4. Headers Exchange - Route based on message headers
channel.exchange_declare(exchange='header_exchange', exchange_type='headers')
channel.basic_publish(
exchange='header_exchange',
routing_key='',
body='Message',
properties=pika.BasicProperties(
headers={'format': 'json', 'priority': 'high'}
)
)

Redis: Simple Pub/Sub or Manual Routing

# Redis Pub/Sub (fire and forget, no persistence)
import redis

r = redis.Redis()

# Publisher
r.publish('notifications', 'System update available')

# Subscriber (must be running to receive messages)
pubsub = r.pubsub()
pubsub.subscribe('notifications')

for message in pubsub.listen():
if message['type'] == 'message':
print(message['data'])

7. Use Case Matrix

ScenarioBest ChoiceWhy
Real-time analyticsKafkaHigh throughput, replay capability
Event sourcingKafkaPersistent log, replay events
Task queuesRabbitMQReliable delivery, acknowledgment
Request-responseRabbitMQBuilt-in reply-to pattern
Complex routingRabbitMQFlexible exchange types
Microservices communicationRabbitMQ or KafkaBoth work well
Real-time leaderboardsRedisUltra-low latency
Simple job queuesRedisEasy setup, fast
Log aggregationKafkaHigh volume, retention
Stream processingKafkaNative stream processing
Lightweight caching + queuingRedisIn-memory speed
Priority queuesRabbitMQNative priority support

When to Use Each

Choose Kafka When:

  1. You need high throughput: Handling millions of messages per second
  2. Event streaming: Building event-driven architectures
  3. Log aggregation: Collecting logs from multiple services
  4. Stream processing: Real-time data processing pipelines
  5. Event sourcing: Need to replay events
  6. Multiple consumers: Same data consumed by different services

Example Architecture:

┌────────────┐
│ Web Apps │─────┐
└────────────┘ │

┌────────────┐ ┌──────────┐ ┌──────────────┐
│ Mobile │──▶│ Kafka │──▶│ Analytics │
└────────────┘ │ Cluster │ └──────────────┘
└────┬─────┘
┌────────────┐ │ ┌──────────────┐
│ IoT │────────┘────────▶│ Monitoring │
└────────────┘ └──────────────┘
┌──────────────┐
│ Data Lake │
└──────────────┘

Choose RabbitMQ When:

  1. Complex routing: Need flexible message routing
  2. Reliable task queues: Background job processing
  3. Request-response: Need reply patterns
  4. Priority queues: Different message priorities
  5. Delayed messages: Schedule messages for later
  6. Traditional messaging: AMQP protocol requirement

Example Architecture:

┌────────────┐
│ API │
└─────┬──────┘


┌──────────────┐ ┌────────────┐
│ RabbitMQ │────▶│ Email │
│ Exchange │ │ Service │
└──────┬───────┘ └────────────┘

├────────────▶┌────────────┐
│ │ SMS │
│ │ Service │
│ └────────────┘

└────────────▶┌────────────┐
│ Push │
│ Service │
└────────────┘

Choose Redis When:

  1. Low latency: Need sub-millisecond latency
  2. Simple use cases: Basic queue functionality
  3. Already using Redis: Leverage existing infrastructure
  4. Session management: Combined with caching
  5. Rate limiting: With queue functionality
  6. Temporary data: Data doesn't need long-term persistence

Example Architecture:

┌────────────┐
│ Web App │
└─────┬──────┘


┌──────────────┐ ┌────────────┐
│ Redis │────▶│ Worker 1 │
│ (Queue + │ └────────────┘
│ Cache) │ ┌────────────┐
└──────────────┘────▶│ Worker 2 │
└────────────┘

Comparison Summary Table

FeatureKafkaRabbitMQRedis
Primary UseEvent streamingMessage brokerCache + Queue
ThroughputVery High (1M+ msg/s)Medium (50K msg/s)High (100K+ msg/s)
LatencyMedium (10ms)Low (1ms)Very Low (<1ms)
PersistenceAlwaysOptionalOptional
Message OrderingPer partitionPer queuePer stream/list
Replay Messages✅ Yes❌ No⚠️ Limited (Streams)
ComplexityHighMediumLow
Learning CurveSteepModerateGentle
Operational OverheadHighMediumLow
ScalabilityExcellentGoodGood
Message RoutingSimple (topic-based)Advanced (exchanges)Basic
Built-in ProcessingKafka Streams❌ No❌ No
ProtocolCustomAMQP, MQTT, STOMPRESP
Best ForStreaming, AnalyticsTasks, MicroservicesSimple queues

Real-World Implementation Example

Let's build a complete order processing system using each technology:

Scenario: E-commerce Order Processing

# Order structure
order = {
'order_id': '12345',
'user_id': 'user789',
'items': [
{'product_id': 'P1', 'quantity': 2, 'price': 29.99},
{'product_id': 'P2', 'quantity': 1, 'price': 49.99}
],
'total': 109.97,
'timestamp': '2025-11-01T10:30:00Z'
}

Implementation with Kafka

from kafka import KafkaProducer, KafkaConsumer
import json

# Order Service (Producer)
class OrderService:
def __init__(self):
self.producer = KafkaProducer(
bootstrap_servers=['localhost:9092'],
value_serializer=lambda v: json.dumps(v).encode('utf-8')
)

def create_order(self, order):
# Publish to orders topic
self.producer.send('orders', value=order)

# Publish to analytics topic (multiple consumers)
self.producer.send('order-analytics', value=order)

print(f"Order {order['order_id']} created")

# Payment Service (Consumer)
class PaymentService:
def __init__(self):
self.consumer = KafkaConsumer(
'orders',
bootstrap_servers=['localhost:9092'],
group_id='payment-service',
value_deserializer=lambda m: json.loads(m.decode('utf-8'))
)

def process(self):
for message in self.consumer:
order = message.value
# Process payment
print(f"Processing payment for order {order['order_id']}")
# Publish payment result
# ...

# Notification Service (Consumer)
class NotificationService:
def __init__(self):
self.consumer = KafkaConsumer(
'orders',
bootstrap_servers=['localhost:9092'],
group_id='notification-service',
value_deserializer=lambda m: json.loads(m.decode('utf-8'))
)

def process(self):
for message in self.consumer:
order = message.value
# Send notification
print(f"Sending notification for order {order['order_id']}")

Implementation with RabbitMQ

import pika
import json

# Order Service (Producer)
class OrderService:
def __init__(self):
self.connection = pika.BlockingConnection(
pika.ConnectionParameters('localhost')
)
self.channel = self.connection.channel()

# Declare exchange
self.channel.exchange_declare(
exchange='orders',
exchange_type='topic',
durable=True
)

def create_order(self, order):
# Route to multiple services based on routing keys
routing_keys = [
'order.created.payment',
'order.created.notification',
'order.created.inventory'
]

for routing_key in routing_keys:
self.channel.basic_publish(
exchange='orders',
routing_key=routing_key,
body=json.dumps(order),
properties=pika.BasicProperties(
delivery_mode=2 # Persistent
)
)

print(f"Order {order['order_id']} created")

# Payment Service (Consumer)
class PaymentService:
def __init__(self):
self.connection = pika.BlockingConnection(
pika.ConnectionParameters('localhost')
)
self.channel = self.connection.channel()

# Declare queue
self.channel.queue_declare(queue='payment_queue', durable=True)

# Bind to exchange
self.channel.queue_bind(
exchange='orders',
queue='payment_queue',
routing_key='order.created.payment'
)

self.channel.basic_qos(prefetch_count=1)

def process(self):
def callback(ch, method, properties, body):
order = json.loads(body)
print(f"Processing payment for order {order['order_id']}")
# Process payment
# ...
ch.basic_ack(delivery_tag=method.delivery_tag)

self.channel.basic_consume(
queue='payment_queue',
on_message_callback=callback
)

self.channel.start_consuming()

Implementation with Redis

import redis
import json

# Order Service (Producer)
class OrderService:
def __init__(self):
self.redis = redis.Redis(host='localhost', port=6379)

def create_order(self, order):
# Add to multiple queues
queues = ['payment_queue', 'notification_queue', 'inventory_queue']

for queue in queues:
self.redis.lpush(queue, json.dumps(order))

print(f"Order {order['order_id']} created")

# Payment Service (Consumer)
class PaymentService:
def __init__(self):
self.redis = redis.Redis(host='localhost', port=6379)

def process(self):
while True:
# Blocking pop from queue
_, message = self.redis.brpop('payment_queue')
order = json.loads(message)

print(f"Processing payment for order {order['order_id']}")
# Process payment
# ...

Monitoring and Operations

Kafka Monitoring

# Key metrics to monitor
kafka_metrics = {
'broker_metrics': [
'UnderReplicatedPartitions',
'OfflinePartitionsCount',
'ActiveControllerCount'
],
'producer_metrics': [
'record-send-rate',
'record-error-rate',
'request-latency-avg'
],
'consumer_metrics': [
'records-lag-max',
'fetch-rate',
'commit-latency-avg'
]
}

RabbitMQ Monitoring

# RabbitMQ Management API
import requests

response = requests.get(
'http://localhost:15672/api/queues',
auth=('guest', 'guest')
)

for queue in response.json():
print(f"Queue: {queue['name']}")
print(f" Messages: {queue['messages']}")
print(f" Consumers: {queue['consumers']}")
print(f" Message rate: {queue['messages_details']['rate']}")

Redis Monitoring

# Redis INFO command
import redis

r = redis.Redis()
info = r.info()

print(f"Connected clients: {info['connected_clients']}")
print(f"Used memory: {info['used_memory_human']}")
print(f"Operations per second: {info['instantaneous_ops_per_sec']}")
print(f"Keyspace hits: {info['keyspace_hits']}")
print(f"Keyspace misses: {info['keyspace_misses']}")

Conclusion

Choosing between Kafka, RabbitMQ, and Redis depends on your specific requirements:

Quick Decision Guide

Choose Kafka if:

  • You need to process high-volume event streams
  • Multiple services need to consume the same data
  • You need message replay capability
  • You're building a data pipeline or analytics platform

Choose RabbitMQ if:

  • You need flexible message routing
  • You want reliable task queue processing
  • You need traditional messaging patterns
  • You have complex routing requirements

Choose Redis if:

  • You need ultra-low latency
  • Your use case is simple
  • You already use Redis for caching
  • Message persistence isn't critical

Can You Use Multiple?

Absolutely! Many architectures use a combination:

# Hybrid architecture example
architecture = {
'Kafka': 'Event streaming and analytics',
'RabbitMQ': 'Task queues and complex routing',
'Redis': 'Caching and simple queues with low latency'
}

For example:

  • Use Kafka for event streaming and analytics
  • Use RabbitMQ for reliable task processing
  • Use Redis for caching and real-time features

The key is understanding the strengths and trade-offs of each technology and choosing the right tool for each job. Start with your requirements, consider your team's expertise, and evaluate the operational complexity you're willing to manage.

Further Reading


What's your experience with these messaging systems? Share your thoughts in the comments below!