Skip to main content

Introduction to Triton Inference Server

NVIDIA Triton Inference Server is an open-source inference serving software that streamlines AI model deployment in production. It enables teams to deploy, run, and scale trained AI models from any framework on both CPUs and GPUs.

What is Triton Inference Server?​

Triton Inference Server provides a cloud and edge inferencing solution optimized for both CPUs and GPUs. It supports an HTTP/REST and GRPC protocol that allows remote clients to request inferencing for any model being managed by the server.

Key Features​

πŸš€ Multi-Framework Support

  • TensorFlow, PyTorch, ONNX Runtime, TensorRT
  • Python backend for custom logic
  • OpenVINO, FasterTransformer
  • Custom backends via C API

⚑ High Performance

  • Dynamic batching for throughput optimization
  • Concurrent model execution
  • GPU memory optimization and sharing
  • Model pipelining (ensembles)

πŸ“Š Production-Ready

  • Health and readiness endpoints
  • Metrics for Prometheus integration
  • Model versioning and hot-reloading
  • A/B testing and canary deployments

πŸ”§ Flexible Deployment

  • Docker containers and Kubernetes
  • AWS, GCP, Azure cloud platforms
  • Edge deployment support
  • Multi-GPU and multi-node scaling

🎯 Advanced Features

  • Shared memory for zero-copy data transfer
  • Automatic mixed precision (AMP)
  • Model analyzer for optimization
  • Business logic scripting (Python backend)

Triton Architecture​

Triton follows a modular architecture designed for flexibility and performance:

Core Components​

1. HTTP/GRPC Endpoints​

REST and GRPC APIs for inference requests:

  • Inference API: Submit inference requests
  • Model Management: Load/unload models dynamically
  • Health API: Check server and model status
  • Metrics API: Prometheus-compatible metrics

2. Model Repository​

Centralized storage for models:

  • Local filesystem or cloud storage (S3, GCS, Azure Blob)
  • Automatic model discovery and loading
  • Version management
  • Configuration per model

3. Backend Frameworks​

Pluggable backends for different frameworks:

  • Native backends (TensorFlow, PyTorch, ONNX)
  • Optimized backends (TensorRT, OpenVINO)
  • Python backend for custom logic
  • Custom backends via C API

4. Scheduler​

Request scheduling and optimization:

  • Dynamic batching
  • Sequence batching for stateful models
  • Priority-based scheduling
  • Rate limiting

5. Model Analyzer​

Performance analysis tool:

  • Benchmark different configurations
  • Find optimal batch sizes
  • GPU memory analysis
  • Latency vs throughput trade-offs

Why Use Triton?​

Performance at Scale​

  • Dynamic Batching: Automatically combines requests for higher throughput
  • GPU Optimization: Efficient GPU memory usage and sharing across models
  • Concurrent Execution: Run multiple models simultaneously on the same GPU

Operational Efficiency​

  • Single Server, Multiple Frameworks: Deploy TensorFlow, PyTorch, and ONNX models on one server
  • Model Versioning: Seamless updates without downtime
  • Cloud-Native: Kubernetes-ready with Helm charts

Production Features​

  • Monitoring: Built-in metrics and logging
  • Model Ensembles: Chain models into pipelines
  • Business Logic: Python backend for pre/post-processing

Common Use Cases​

Real-Time Inference​

Serve models with low latency for applications like:

  • Recommendation systems
  • Fraud detection
  • Natural language processing
  • Computer vision applications

Batch Processing​

High-throughput batch inference for:

  • Large-scale data processing
  • Offline model evaluation
  • Data labeling pipelines

Edge Deployment​

Deploy on edge devices with:

  • Optimized models (TensorRT, ONNX)
  • Resource-constrained environments
  • Local inference requirements

Multi-Model Serving​

Serve multiple models efficiently:

  • A/B testing different model versions
  • Model ensembles and pipelines
  • Multi-tenant deployments

Triton vs. Other Solutions​

FeatureTritonTorchServeTensorFlow Serving
Multi-Frameworkβœ…LimitedTensorFlow only
Dynamic Batchingβœ…βœ…βœ…
Model Ensemblesβœ…βŒLimited
Python Backendβœ…βœ…βŒ
GPU Sharingβœ…LimitedLimited
Cloud Storageβœ…Limitedβœ…

Architecture Diagram​

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Client Applications β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚ HTTP/REST or GRPC
β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Triton Inference Server β”‚
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚ β”‚ Request Handling Layer β”‚ β”‚
β”‚ β”‚ β€’ Load Balancing β€’ Authentication β€’ Metrics β”‚ β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚ β”‚ Scheduler β”‚ β”‚
β”‚ β”‚ β€’ Dynamic Batching β€’ Sequence Batching β”‚ β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚ β”‚TensorFlowβ”‚ PyTorch β”‚ ONNX β”‚ Python Backend β”‚ β”‚
β”‚ β”‚ Backend β”‚ Backend β”‚ Backend β”‚ β”‚ β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β”‚
β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Model Repository β”‚
β”‚ β€’ Local FS β€’ S3 β€’ GCS β€’ Azure Blob β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Next Steps​

Now that you understand what Triton Inference Server is and its capabilities, proceed to: