Skip to main content

Comparison with Other ML Deployment Tools

This guide compares BentoML with other popular machine learning model deployment tools to help you choose the right solution for your needs.

Overview of ML Deployment Tools

ToolTypeBest ForLearning CurveCloud Native
BentoMLFull-stack ML serving frameworkProduction ML servicesMedium✅ Yes
TensorFlow ServingModel serving systemTensorFlow modelsMedium✅ Yes
TorchServeModel serving systemPyTorch modelsMedium✅ Yes
MLflowEnd-to-end ML platformExperiment tracking + deploymentMedium⚠️ Partial
KServeKubernetes-native servingK8s-based deploymentsHigh✅ Yes
Seldon CoreML deployment platformEnterprise K8s deploymentsHigh✅ Yes
FastAPIWeb frameworkCustom API developmentLow⚠️ Partial
Flask/DjangoWeb frameworksSimple web servicesLow⚠️ Partial

Detailed Comparisons

BentoML vs TensorFlow Serving

TensorFlow Serving

  • Purpose-built for TensorFlow and TFX pipelines
  • High-performance serving with gRPC support
  • Limited to TensorFlow ecosystem
  • Requires protobuf definitions for API

BentoML Advantages:

# BentoML - Framework agnostic
@bentoml.service
class MultiFrameworkService:
tf_model = bentoml.tensorflow.get("my_tf_model")
pytorch_model = bentoml.pytorch.get("my_pytorch_model")
sklearn_model = bentoml.sklearn.get("my_sklearn_model")

@bentoml.api
def predict(self, input_data):
# Use any framework
pass

When to use TensorFlow Serving:

  • Pure TensorFlow deployment
  • Already using TFX pipeline
  • Need maximum TensorFlow optimization

When to use BentoML:

  • Multiple ML frameworks
  • Python-based preprocessing
  • Need flexible deployment options
  • Want simpler API definition

BentoML vs TorchServe

TorchServe

  • Official PyTorch serving solution
  • Optimized for PyTorch models
  • Built-in metrics and logging
  • MAR (Model Archive) format

Comparison Example:

TorchServe approach:

# handler.py - TorchServe
class MyHandler(BaseHandler):
def initialize(self, context):
self.model = torch.jit.load("model.pt")

def preprocess(self, data):
# Manual preprocessing
pass

def inference(self, data):
return self.model(data)

def postprocess(self, data):
# Manual postprocessing
pass

BentoML approach:

# service.py - BentoML
@bentoml.service
class MyService:
model = bentoml.pytorch.get("my_model")

@bentoml.api
def predict(self, data: np.ndarray) -> dict:
# Automatic serialization/deserialization
return {"predictions": self.model(data)}

When to use TorchServe:

  • PyTorch-only deployment
  • Need PyTorch-specific optimizations
  • Already invested in PyTorch ecosystem

When to use BentoML:

  • Multiple frameworks
  • Simpler Python-based development
  • More flexible deployment options
  • Better developer experience

BentoML vs MLflow

MLflow

  • Comprehensive ML lifecycle management
  • Experiment tracking and model registry
  • Multiple deployment backends
  • Model registry as primary feature

Key Differences:

FeatureBentoMLMLflow
Primary FocusModel ServingFull ML Lifecycle
Experiment Tracking❌ No✅ Yes
Model Registry✅ Built-in✅ Central feature
API Generation✅ Automatic⚠️ Manual
Deployment Options✅ Extensive⚠️ Limited
Performance Optimization✅ Adaptive batching❌ Basic
Docker Support✅ Native✅ Via plugins

Integration Example:

# You can use both together!
import mlflow
import bentoml

# Log with MLflow
with mlflow.start_run():
model = train_model()
mlflow.sklearn.log_model(model, "model")

# Deploy with BentoML
bentoml.sklearn.save_model("my_model", model)

@bentoml.service
class MLflowBentoService:
model = bentoml.sklearn.get("my_model")

@bentoml.api
def predict(self, data):
return self.model.predict(data)

When to use MLflow:

  • Need experiment tracking
  • Want model registry with UI
  • Building end-to-end ML platform
  • Multiple teams collaborating

When to use BentoML:

  • Focus on production serving
  • Need high-performance inference
  • Want simple deployment workflow
  • Cloud-native deployments

Best Practice: Use Both

  • MLflow for experiment tracking and model registry
  • BentoML for production model serving

BentoML vs KServe (formerly KFServing)

KServe

  • Kubernetes-native serving platform
  • Part of Kubeflow ecosystem
  • Requires Kubernetes
  • Advanced features (canary, explainability)

Complexity Comparison:

KServe deployment:

# KServe InferenceService
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
name: sklearn-iris
spec:
predictor:
sklearn:
storageUri: gs://my-bucket/model
resources:
limits:
cpu: "1"
memory: 2Gi

BentoML deployment:

# Build and deploy
bentoml build
bentoml containerize iris_classifier:latest
kubectl apply -f deployment.yaml # Standard K8s

When to use KServe:

  • Already using Kubeflow
  • Need advanced K8s features
  • Want serverless autoscaling
  • Require explainability features

When to use BentoML:

  • Simpler deployment workflow
  • Not locked to Kubernetes
  • Want local testing
  • Need framework flexibility

BentoML vs Seldon Core

Seldon Core

  • Enterprise ML deployment platform
  • Advanced features (A/B testing, canary)
  • Requires Kubernetes
  • Complex setup

Feature Comparison:

FeatureBentoMLSeldon Core
Setup ComplexityLowHigh
K8s RequiredNoYes
Multi-framework✅ Yes✅ Yes
A/B Testing⚠️ Manual✅ Built-in
Canary Deployment⚠️ K8s-level✅ Built-in
Local Development✅ Easy⚠️ Complex
Commercial Support✅ Available✅ Available

When to use Seldon Core:

  • Enterprise deployments
  • Need advanced routing
  • Require governance features
  • Have Kubernetes expertise

When to use BentoML:

  • Faster time to production
  • Simpler architecture
  • Need local development
  • Want flexibility in deployment

BentoML vs FastAPI

FastAPI

  • General-purpose web framework
  • Not ML-specific
  • Manual model management
  • Great for custom APIs

Development Comparison:

FastAPI approach:

from fastapi import FastAPI
import joblib

app = FastAPI()
model = joblib.load("model.pkl") # Manual loading

@app.post("/predict")
def predict(data: dict):
# Manual input validation
# Manual preprocessing
prediction = model.predict(data)
# Manual postprocessing
return {"prediction": prediction}

# Need to handle:
# - Model versioning
# - Containerization
# - Batching
# - Monitoring
# - Deployment

BentoML approach:

import bentoml

@bentoml.service
class PredictionService:
model = bentoml.sklearn.get("model:latest") # Automatic versioning

@bentoml.api
def predict(self, data: dict) -> dict: # Automatic validation
return self.model.predict(data)

# Automatically provides:
# ✅ Model versioning
# ✅ Containerization
# ✅ Adaptive batching
# ✅ Metrics
# ✅ Deployment tools

When to use FastAPI:

  • Building custom APIs
  • Need full control
  • Simple deployment
  • Not ML-focused

When to use BentoML:

  • ML model serving
  • Need model management
  • Want batching optimization
  • Production ML deployment

BentoML vs Ray Serve

Ray Serve

  • Part of Ray ecosystem
  • Distributed serving
  • Tight Ray integration
  • Complex distributed scenarios

When to use Ray Serve:

  • Already using Ray
  • Need distributed computing
  • Complex multi-model pipelines
  • Have Ray expertise

When to use BentoML:

  • Simpler serving needs
  • Standard deployment patterns
  • Better developer experience
  • Broader deployment options

Feature Matrix

FeatureBentoMLTF ServingTorchServeMLflowKServeFastAPI
Multi-framework
Auto API Gen⚠️⚠️⚠️
Model Versioning⚠️⚠️
Adaptive Batching⚠️⚠️
Docker Support⚠️
K8s Native⚠️⚠️⚠️
Local Testing⚠️⚠️
Learning CurveMediumMediumMediumMediumHighLow
CommunityGrowingLargeLargeLargeGrowingLarge

Performance Comparison

Based on typical production workloads:

Throughput (requests/second)

ToolSmall ModelLarge ModelGPU Optimization
BentoML⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
TF Serving⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
TorchServe⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
MLflow⭐⭐⭐⭐⭐⭐⭐⭐⭐
FastAPI⭐⭐⭐⭐⭐⭐⭐⭐

Latency (p99)

ToolOptimization Level
BentoMLExcellent (adaptive batching)
TF ServingExcellent (optimized for TF)
TorchServeGood (optimized for PyTorch)
MLflowGood (depends on backend)
FastAPIVariable (manual optimization)

Decision Guide

Choose BentoML if you want:

  • ✅ Multi-framework support
  • ✅ Simple Python-based development
  • ✅ Automatic API generation
  • ✅ Built-in model versioning
  • ✅ Adaptive batching
  • ✅ Flexible deployment (local, cloud, K8s)
  • ✅ Good balance of features and simplicity

Choose TensorFlow Serving if you want:

  • ✅ Pure TensorFlow deployment
  • ✅ Maximum TF performance
  • ✅ TFX integration
  • ❌ Don't need other frameworks

Choose TorchServe if you want:

  • ✅ Pure PyTorch deployment
  • ✅ Official PyTorch support
  • ✅ PyTorch-specific features
  • ❌ Don't need other frameworks

Choose MLflow if you want:

  • ✅ Complete ML lifecycle management
  • ✅ Experiment tracking
  • ✅ Model registry with UI
  • ⚠️ Can combine with BentoML for serving

Choose KServe if you want:

  • ✅ Kubernetes-native deployment
  • ✅ Advanced K8s features
  • ✅ Serverless autoscaling
  • ❌ Don't mind K8s complexity

Choose FastAPI if you want:

  • ✅ Full control over API
  • ✅ Custom business logic
  • ✅ Simple web service
  • ❌ Don't need ML-specific features

Cost Comparison

Development Time

TaskBentoMLTF ServingFastAPIMLflow
Initial Setup30 min1-2 hours30 min1-2 hours
Model Integration15 min30-45 min30 min30 min
API Development10 min30 min30-60 min45 min
Containerization5 min15 min30-60 min30 min
K8s Deployment30 min45 min60 min60 min
Total~1.5 hrs~3 hrs~3 hrs~3.5 hrs

Infrastructure Cost

All tools have similar infrastructure costs when properly optimized. Key factors:

  • Resource utilization (CPU/GPU)
  • Auto-scaling configuration
  • Batch processing efficiency
  • Cache usage

BentoML's adaptive batching can reduce costs by 40-60% compared to per-request serving.

Migration Examples

From FastAPI to BentoML

Before (FastAPI):

from fastapi import FastAPI
import joblib

app = FastAPI()
model = joblib.load("model.pkl")

@app.post("/predict")
def predict(data: dict):
return model.predict([data["features"]])

After (BentoML):

import bentoml

@bentoml.service
class Predictor:
model = bentoml.sklearn.get("model:latest")

@bentoml.api
def predict(self, features: list[float]) -> list:
return self.model.predict([features])

From MLflow to BentoML

# Keep MLflow for tracking
import mlflow
import bentoml

# Log with MLflow
with mlflow.start_run():
model = train_model()
mlflow.sklearn.log_model(model, "model")

# Load from MLflow, save to BentoML
model_uri = "runs:/<run_id>/model"
model = mlflow.sklearn.load_model(model_uri)
bentoml.sklearn.save_model("prod_model", model)

# Serve with BentoML
@bentoml.service
class ProdService:
model = bentoml.sklearn.get("prod_model:latest")

@bentoml.api
def predict(self, data):
return self.model.predict(data)

Conclusion

BentoML excels when you need:

  • Multi-framework model serving
  • Rapid deployment workflow
  • Production-grade performance
  • Flexibility in deployment options
  • Good developer experience

Consider alternatives when:

  • You're deeply invested in a specific ecosystem (TF, PyTorch)
  • You need enterprise features (Seldon, KServe)
  • You want full ML lifecycle management (MLflow)
  • You need maximum control (FastAPI)

Best Practice: Combine tools based on your needs:

  • MLflow for experiment tracking and model registry
  • BentoML for model serving and deployment
  • Kubernetes for orchestration
  • Prometheus for monitoring

Next Steps